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Abstract

Purpose – To evaluate the performance of different subgrid kinetic energy models across a range of
Reynolds numbers while keeping the grid constant.

Design/methodology/approach – A dynamic subgrid kinetic energy model, a static coefficient
kinetic energy model, and a “no-model” method are compared with direct numerical simulation (DNS)
data at two friction Reynolds numbers of 180 and 590 for turbulent channel flow.

Findings – Results indicate that, at lower Reynolds numbers, the dynamic model more closely
matches DNS data. As the amount of energy in the unresolved scales increases, the performance of
both kinetic energy models is seen to decrease.

Originality/value – This paper provides guidance to engineers who routinely use a single grid to
study a wide range of flow conditions (i.e. Reynolds numbers), and what level of accuracy can be
expected by using kinetic energy models for large eddy simulations.
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Introduction
Large eddy simulations (LES) of turbulent channel flow is a topic of ongoing research
(Gullbrand, 2004). The advantage of performing LES rather than a Reynolds averaged
Navier-Stokes (RANS) simulation is that LES gives information about the
instantaneous structures in the flow, as opposed to a RANS simulation which
time-averages those structures into a mean flowfield. Also, LES is not restricted to low
Reynolds numbers, which is a major drawback of direct numerical simulations (DNS).
In LES, a low-pass filter is applied to the Navier-Stokes equations which filters out the
smallest scales of motion and replaces their effect with a subgrid model. The large,
energy-containing scales of motion are fully resolved in LES. Typically, the grid itself
is used as the low-pass filter, giving rise to the approach known as implicit filtering,
which is the most common approach in LES as no explicit filtering is applied to the
governing equations.

There are many subgrid models available; a comprehensive review of available
subgrid models is given in Lesieur and Metais (1996). Additionally, a more recent
review may be found in Meneveau and Katz (2000). Meneveau and Katz (2000) give
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a detailed look at a priori and a posteriori studies along with various methods of
separating the large scales from the small scales with techniques such as orthonormal
basis functions. They discuss the Smagorinsky model and its limitations in detail, and
they favorably review the dynamic Smagorinsky model. Bardina’s similarity model is
discussed, along with its mixed model variation. Testing of LES models based on
comparison between real and modeled stresses is considered by reviewing the work on
optimal LES approaches (Langford, 2000; Volker, 2000). Other less traditional models
such as kinetic energy models and gradient models are only briefly reviewed.

Although much work has been done in LES modeling, relatively few studies have
been performed which evaluate the class of kinetic energy models a posteriori. Kinetic
energy models provide a method to directly evaluate how much energy is in the
unresolved scales. To the authors’ knowledge, no work has been done to evaluate how
kinetic energy models perform based on the amount of energy in the unresolved scales
of motion, accomplished by holding the grid fixed and increasing the Reynolds
number. This will be the focus of this work. First, we will review what work has been
done in the development of kinetic energy models, after which we will review what has
been done in channel flow simulations.

One of the earliest works in subgrid kinetic energy models is that of Schumann
(1975) who employs the use of the subgrid scale (SGS) kinetic energy, ksgs, to find the
eddy viscosity rather than relying on a Smagorinsky approach. He considers channels
and annuli, but the key feature in this paper is his kinetic energy model. The eddy
viscosity is split into two parts: the locally isotropic and inhomogeneous parts.
A transport equation is developed for ksgs which includes convection, production,
dissipation, and diffusion. One unique approach is that the strain-rate tensor in the
production term is based on the fluctuating velocities rather than the total velocities.
This ensures zero production in the case of laminar flow. Some empiricism is required
in order to set the constants in his model, and satisfactory agreement was obtained
using the new SGS model.

Schmidt and Schumann (1989) continue the work of Schumann (1975) by
investigating the convective boundary layer. No effort is made to split the SGS stresses
as Schumann (1975) had originally done. Instead, a single refined transport equation
for ksgs is developed which includes buoyancy. To ensure non-negative values of ksgs,
the second-order upwind scheme is used. Also, they develop a second-order closure
model for their kinetic energy equation. Fair agreement is obtained when comparing
with experimental atmospheric data.

A dynamic version of the SGS kinetic energy model was proposed by Kim and
Menon (1995) and compared to DNS, a dynamic eddy viscosity model, and a previous
dynamic ksgs model. They consider averaging their dynamic model in a local cube, but
argue that this is not what a true dynamic model should entail. Instead of averaging
just for the sake of numerical stability, they propose a dynamic method which requires
no averaging. A method similar to the way Germano et al. (1991) set up the two filter
system is formulated and calculations are performed for Taylor-Green vortex flow.
A non-staggered grid with second-order time accuracy and fifth-order (convective
terms) and sixth-order (viscous terms) spatial accuracy is used. Agreement with DNS is
found to be better than the other models tested. In addition, lower computational costs
are experienced when compared to the previous dynamic ksgs model. By performing
the simulations on two different grids, they confirm that the grid resolution was not
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the deciding factor. A version of their dynamic ksgs model will be described in detail in
a later section of this paper.

Simulations of turbulent channel flow have been a topic of much research. Tafti and
Vanka (1990) have done a detailed LES of channel flow at a Reynolds number of
180 based on channel half-height and friction velocity. Using a finite volume approach
and staggered grid, they employed the Smagorinsky model to calculate the eddy
viscosity. A comparison with DNS data shows good agreement, with 5 percent error in
the calculated friction factor with their coarse grid (32 £ 64 £ 32 cells). Their fine grid
(66 £ 66 £ 66 cells; with stretching) showed worse agreement in the means, but better
agreement in turbulent statistics. They suggest that perhaps the stretching in the wall
direction decreased the accuracy of the calculation and state a uniform 66 £ 66 cross
section would have worked better. Also, the use of an iterative multigrid approach in
solving the pressure Poisson equations gave a significant speed up in the execution
time.

Blackburn (1998) performed LES with the Smagorinsky model in conjunction with a
van Driest-type wall damping function. This wall damping function essentially
removes the Smagorinsky model near the wall. A friction Reynolds number of 651 is
used for LES and compared with experimental results at a friction Reynolds number of
640. Satisfactory agreement in the buffer layer is obtained; however, poor agreement
near the wall is attributed to experimental error. Two other simulations are conducted
as well: a no-model LES on the same grid and the Smagorinsky model without a wall
damping function. The no-model approach gives correct near-wall behavior, but poor
results in the outer region. Without a damping function, the Smagorinsky model gives
poor results in the mean flow throughout the domain. When comparing the fluctuating
velocities, they find that their LES with a wall function over predicts the streamwise
root mean square (rms) velocity by roughly 20 percent.

Highly resolved channel flow DNS calculations were performed by Kim et al. (1987)
and Abe et al. (2001). The numerical method consists of a spectral method – Fourier
series in both the spanwise and streamwise directions with Chebychev polynomials in
the wall normal direction. The Reynolds number based on friction velocity and channel
half-height was 180. It was found that although good agreement was obtained in the
turbulence statistics, the Reynolds stresses were consistently lower than the
experimental values, yet the computed vorticity near-wall fluctuations were higher
than experimental results. They suggest possible error in the experiment and
renormalize the experimental data by a corrected shear velocity and obtain excellent
agreement except with the calculated turbulence intensities, which still remain lower
than the experimentally reported values. Abe et al. (2001) examined the Reynolds
number dependence of channel flow by performing DNS at Ret ¼ 180; 395; and 640:
They find a greater enhancement of the spanwise and wall-normal rms velocities
compared to the streamwise rms velocity as the Reynolds number is increased.

One reason that the second-order central differencing approach is popular is that it
is energy conserving. However, an increase in accuracy would give less numerical
dissipation and the effect of subgrid models would be more easily seen. In a recent
paper by Gullbrand (2000), a conservative fourth-order code is used in turbulent
channel flow. Data are compared to the results from a spectral DNS code and a
second-order finite difference code. A staggered grid is used and the convective
term is written in a skew-symmetric form to ensure conservation of kinetic energy.
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A 128 £ 128 £ 128 grid is used and excellent agreement is obtained at Ret ¼ 180 when
comparing the mean and rms velocities. Little difference is shown between the second
and fourth-order codes. Neither the fourth-order nor the second-order code can match
the spectra produced by the spectral code at high wave numbers, which is expected due
to the implicit top-hat filtering in any finite volume-type code. LES is used on a
69 £ 49 £ 48 grid with the dynamic Smagorinsky model at Ret ¼ 395: The mean
velocity is predicted well, while the rms quantities are underpredicted in the wall and
spanwise directions, and overpredicted in the streamwise directions. Again, the spectra
show that the high wave numbers are contaminated from numerical errors.

Although much work has been performed in both channel flow and kinetic energy
modeling, there is a noticeable lack of information on the performance of subgrid
kinetic energy models based on the amount of energy in the unresolved scales. We will
examine LES of turbulent channel flow using a dynamic and static kinetic energy
model, along with a no-model LES, and report on the performance of each model as the
Reynolds number is varied.

Numerical procedure
The incompressible form of the three-dimensional, unsteady Navier-Stokes equations
is solved using a second-order accurate finite volume method with central differencing
of spatial derivatives on a non-staggered grid. The friction Reynolds number based on
average friction velocity, ut ¼ ð �tw=rfÞ

1=2; and channel half-height, d, is Ret ¼ utd=n ¼
180 and 590; where �tw; rf, and n are the mean wall shear stress, the fluid density, and
the kinematic viscosity, respectively. Diffusion terms are incorporated using the
Crank-Nicholson scheme and the convective terms with the second-order accurate
Adams-Bashforth scheme. The Harlow-Welch fractional step method was used to
decouple the continuity and momentum equations. An algebraic multigrid solver was
used to solve the pressure Poisson equation resulting from the fractional step method.
The equations of motion for the fluid are given by:

7 ·u ¼ 0 ð1Þ

›u

›t
þ 7 · ðuuÞ ¼ 27pþ

1

Ret
72u ð2Þ

where the quantities have been made dimensionless by ut and d. The dimensionless
time scale is given by d=ut: The dimensionless time step is set to 5 £ 1024:
The components of the velocity vector u in the streamwise, wall-normal, and spanwise
directions are u, v and w, respectively. Periodic boundary conditions are applied in the
spanwise and streamwise directions; zero tangential velocity and zero normal velocity
are imposed at the wall.

Top-hat filtering, implemented through finite-volume implicit grid-filtering, was
used to generate the equations governing the transport of the large eddies. After
filtering, the equations of motion become the following:

7 · �u ¼ 0 ð3Þ
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›�ui
›t

þ
›

›xj
ð�ui �ujÞ ¼ 2

› �P

›xi
þ

›

›xj

1

Ret
þ nT

� �
›�ui
›xj

� �
þ

›

›xj
nT

›�uj
›xi

� �
þ di1 ð4Þ

The “overbar” notation denotes application of the top-hat filter. The last term on the
right hand side of equation (4) represents the mean streamwise pressure gradient.
The eddy viscosity, nT, is determined from the subgrid kinetic energy, as described in
the following section.

Subgrid model formulation
Kim and Menon (1997) developed a dynamic subgrid kinetic energy model which
will be summarized here for the reader. Two grids are needed for a dynamic
subgrid model. The test-filter grid, having a resolution of 50 £ 50 £ 25 in the
streamwise, wall-normal, and spanwise directions, respectively, was first generated.
A 2.5 percent geometric grid stretching is used in the wall normal direction on the
test-filter grid. A nested grid method was used, in which each test-filter grid cell
was subdivided into eight uniform fine-grid cells, which gave a final grid resolution
of 100 £ 100 £ 50: This allows for a simple and rapid process for generating a two
grid system which allows easy implementation of the dynamic model when
compared to agglomeration methods.

The transport equation for the subgrid kinetic energy, ksgs, is given as:

›ksgs

›t
þ �ui

›ksgs

›xi
¼ nT j�Sj

2
2 1þ

›

›xi
nT

›ksgs

›xi

� �
ð5Þ

where the eddy viscosity, nT, is given by:

nT ¼ Ct
�Dk

1=2
sgs ð6Þ

and the dissipation rate, 1, is given by:

1 ¼ C1

k3=2
sgs

�D
ð7Þ

where �D is the grid scale and C1 and Ct are dynamically determined. The resolved
strain-rate tensor, �S; is expressed as:

�Sij ¼
1

2

›�ui
›xj

þ
›�uj

›xi

� �
ð8Þ

and its magnitude is defined as:

j �Sj ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2�Sij

�Sij

q
ð9Þ

Let the “hat” notation symbolize the application of the test filter to a quantity and the
“overbar” notation symbolize application of the grid filter. The Leonard stress tensor is
then defined as:

Lij ¼ �ui �ujc 2 ûiûj ð10Þ
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The kinetic energy at the test filter level can be found from the trace of (10):

ktest ¼
1

2
�uk �ukd 2 �ûk �ûk

� �
ð11Þ

The dissipation at the test filter level is expressed as:

1test ¼ ðnþ nTÞ
›�ui
›xj

›�ui
›xj

2
›�̂ui
›xj

›�ûi
›xj

� �
ð12Þ

Through a similarity assumption between the subgrid stress tensor and the Leonard
stress tensor, one can arrive at the following equation:

Lij ¼ 22CtD̂k
1=2

test
�S^ ij þ

1

3
dijLkk ð13Þ

The least-square method of Lilly (1992) is then used to obtain a formula for Ct :

Ct ¼
1

2

Lijsij

sijsij

ð14Þ

where

sij ¼ 2D̂k
1=2

test
�S^ ij ð15Þ

By invoking a similarity assumption between the dissipation at the test filter and grid
filter level, an equation for the dissipation at the test filter level is given as:

1test ¼ C1

k
3=2
test

D̂
ð16Þ

One may now calculate Ct and C1. These constants have been constrained to be
positive in the current simulations. The advantage of the dynamic model is that no wall
models need to be applied. This can be an advantage in flows where traditional wall
functions may not be valid. The drawback of the dynamic model is that two grids are
needed to evaluate the constants which increases the complexity of the grid generation
phase of the problem.

In the model of Horiuti (1985), the constants Ct and C1 are held fixed rather than
determined dynamically (Ct ¼ 0:05; C1 ¼ 1:0). Also, to achieve correct near-wall
behavior, a van Driest wall damping function was added to the Horiuti model.
The damping function acted on the turbulent viscosity production and decayed in the
following fashion:

Ct ¼ 0:05 1 2 exp½2ð yþ=AþÞ3�
� 	1=2

ð17Þ

A þ is a constant commonly chosen to be 26, yþ is the nondimensional distance from
the wall ( yþ ¼ yut=n). The advantage of the Horiuti model is that only one grid needs
to be generated. The drawback of the Horiuti model is that wall functions typically
need to be applied which may not be known for complex flows.
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Results
LES of turbulent flow in a channel of dimensions 4pd £ 2d £ 2pd in the streamwise,
wall-normal and spanwise directions, respectively, were carried out for Ret ¼
180 and 590; based on friction velocity ut and channel half-height d. See Figure 1 for a
schematic of the geometry. The results at Ret ¼ 180 and 590 were compared with
those from the DNS of Kim et al. (1987) and Moser et al. (1999), respectively. The
models studied in this work include the dynamic subgrid kinetic energy model (Kim
and Menon, 1997), the static coefficient subgrid kinetic energy model (Horiuti, 1985)
with a wall-damping function, and the so-called “no-model” LES, which is equivalent to
a coarse grid DNS. The grid employed was 100 £ 100 £ 50 in the streamwise,
wall-normal and spanwise directions, respectively. A 2.5 percent geometric
progression stretching is applied to the grid in the wall-normal direction, and a
uniform grid is used in the homogeneous directions. The statistics are averaged in time
and the two homogeneous (streamwise and spanwise) directions. Statistics were
averaged for ten dimensionless time units (time is made dimensionless by d/ut). Longer
averaging times resulted in insignificant changes in the statistics. Further details and
validation of the code in a turbulent square duct flow are given in Winkler et al. (2004).

Ret5 180 results
Simulations were performed at Ret ¼ 180 and the results compared to Kim et al. (1987).
The mean velocity profiles are shown in Figure 2(a). Velocity and distance variables
are shown in wall units (uþ ¼ u=ut and yþ ¼ yut=n). Results from three models are
compared to the DNS data: the no-model, the Horiuti static kinetic energy model, and
the dynamic kinetic energy model. In the near-wall region, all three cases compare well
with the DNS data. However, near the channel centerline, all models overpredict the
DNS data, with the dynamic model most closely matching the DNS data. The Horiuti
model is seen to overpredict the DNS by more than ten percent, with the dynamic
model overpredicting the DNS data by less than two percent.

The rms streamwise velocity (urms) profiles are shown in Figure 2(b). Here, the rms
velocity is calculated as the time average of the square root of the square of the
fluctuating component of velocity. It is clear that urms predicted by the dynamic model
compares best with the DNS data, followed closely by the no-model case. The
wall-normal rms (vrms) results (Figure 2(b)) show that the no-model method compares
well with the DNS data. The vrms values from the kinetic energy models are

Figure 1.
Channel flow geometry for
LES simulations
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Figure 2.
(a) Mean velocity profiles,

Ret ¼ 180; (b) RMS
velocities, Ret ¼ 180;

(c) Reynolds stress u 0v 0,
Ret ¼ 180
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underpredicted when compared to the DNS data. The spanwise rms velocity (wrms) is
shown in Figure 2(b). It is seen that the dynamic kinetic energy model underpredicts
the DNS data by roughly 20 percent. The Horiuti model is seen to most closely match
the DNS data. The no-model case overpredicts the DNS by approximately 20 percent.
The Reynolds stress term, u0v0; is shown in Figure 2(c). It is seen that the no-model case
performs best, followed closely by the Horiuti model. The dynamic model
underpredicts the maximum magnitude of the term by roughly 28 percent.

The value of the SGS kinetic energy (ksgs) predicted by each model is shown in
Figure 3. It is clear that the dynamic model predicts roughly twice as much ksgs as the
Horiuti model. The non-smooth near wall behavior of ksgs computed from the dynamic
model can be attributed to the manner in which the fine grid is derived from the coarse
grid, as two daughter cells of the coarse grid are forced to have identical production
and dissipation coefficients which is a necessary numerical artifact of the model.
However, the method used in the present work for implementing the dynamic model
allows rapid grid generation which often is a valuable asset to industrial practice. It is
seen that ksgs correctly goes to zero near the wall for both models. Near the channel
center, both models predict the same level of subgrid energy. The turbulent eddy
viscosity, nT, predicted by the dynamic model is shown in Figure 4. The non-smooth
nature of the dynamic model values has already been explained. It is seen that the
turbulent viscosity approaches zero near the wall. The value of the coefficient for
the production term, Ct, in the dynamic model is shown in Figure 5. It is clear that
the advantage of the dynamic model is that a wall model is not needed to generate
correct near-wall behavior of the coefficient. The dynamic model automatically damps
the production term at the wall. The Horiuti model claims this coefficient is a constant
0.05, which is roughly the mean value given by the dynamic model. The dissipation
term coefficient, C1, in the dynamic model is shown in Figure 6. The constant
coefficient models suggest a value of 1 to 1.5, which falls within the range given by the
dynamic model.

Ret 5 590 results
Here, the grid is same as the above simulations and the Reynolds number is increased
to 590. In industry, typically the same grid is used for a variety of flow conditions.

Figure 3.
Mean ksgs
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Figure 4.
Mean nT

Figure 5.
Mean Ct

Figure 6.
Mean C1
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By holding the grid fixed and increasing the Reynolds number, the current results will
give the reader insight regarding the sensitivity of the models as a function of the
amount of unresolved energy in the SGSs, as well as how various models perform
relative to one another. The DNS data of Moser et al. (1999) are used as the baseline
for comparison. The no-model approach was not used at this Reynolds number for
numerical stability reasons. When examining the mean velocity profile, shown in
Figure 7(a), it is clear that the qualitative trends, such as inflection points, in the DNS
mean velocity profile are not captured at this Reynolds number by either ksgs model.
The dynamic model captures the near-wall region better than the Horituti model,
yet near the centerline the dynamic model overpredicts the DNS data by roughly
20 percent.

The urms velocity profiles are shown in Figure 7(b). It is seen that neither of the two
models capture the location of the peak of urms accurately. It will be shown that the
amount of unresolved energy is large for this Reynolds number, and thus, the choice of
a proper subgrid model is more important than at low Ret. The vrms velocity profiles
are shown in Figure 7(b). The models underpredict the DNS data as well as do not
capture the location of the peak intensity. The wrms velocity profiles are shown in
Figure 7(b). The Horiuti model underpredicts the DNS data, while the dynamic model
overpredicts the peak by roughly 19 percent. The location of the peak intensity is more
closely predicted by the dynamic model. The Reynolds stress term, u0v0; is shown in
Figure 7(c). The dynamic model predicts the DNS data the closest. The Horiuti model
underpredicts the maximum magnitude of the Reynolds stress as well as gives the
peak farther from the wall compared to both the DNS and the dynamic model.

The value of the subgrid kinetic energy predicted by each model is shown in
Figure 3. It is clear that the dynamic model predicts roughly twice as much ksgs as the
Horiuti model. It is seen that ksgs correctly approaches zero near the wall for both
models. The turbulent eddy viscosity predicted by the dynamic model is shown in
Figure 4. The non-smooth behavior of this viscosity is due to the nature of the grid
used in the dynamic model formulation, as explained before. As the Reynolds number
is increased, it is seen that the location of the peak of nT moves away from the wall as
well as increases in magnitude near the channel center. The value of the coefficient for
the production term in the dynamic model is shown in Figure 5. Correct near-wall
behavior is seen as the production coefficient, Ct, vanishes near the wall. Near the wall,
Ct is seen to be larger at Ret ¼ 180: Near the centerline, Ct is larger at Ret ¼ 590:
This is in agreement with the profiles of the eddy viscosity, as large production
coefficients translate into large values of eddy viscosity. The coefficient for the
dissipation term in the dynamic model is shown in Figure 6. The magnitude of the
dissipation coefficient is seen to be smaller at all y þ for Ret ¼ 590; with the minimum
C1 moving away from the wall as the Reynolds number is increased.

Conclusions
Turbulent flow in a channel was examined with LES. A dynamic and static subgrid
kinetic energy model were used along with the so-called “no-model” method. Results
were presented for Ret ¼ 180 and 590; based on friction velocity ut and channel
half-height d. The grid was held fixed between the two Reynolds numbers to clearly
show the behavior of the subgrid models under varying levels of unresolved energy.
It was seen that an advantage of the dynamic model is that no wall function is needed
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Figure 7.
(a) Mean velocity profiles,

Ret ¼ 590; (b) RMS
velocities, Ret ¼ 590; (c)

Reynolds stress u 0v 0,
Ret ¼ 590
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to obtain correct near wall behavior of the model parameters. It was seen that results
can be highly dependant on the choice of the subgrid model as well as the grid
resolution, which translates directly to how much energy is contained in the unresolved
scales of motion. When the amount of energy in the unresolved scales is relatively
small (Ret ¼ 180), the dynamic model was able to closely match the DNS mean
velocity profile. However, when the amount of energy in the unresolved scales is
relatively large (Ret ¼ 590), the performance of both subgrid models is seen to decease.
This is expected as all subgrid models assume a universal behavior of the small scales,
and as the amount of energy in the unresolved scales is increased, this assumption
breaks down due to relatively larger anisotropic scales being included as part of the
unresolved scales when the grid is held fixed and the Reynolds number is increased.
To the authors’ knowledge, this effect has not been quantified prior to this work in this
manner, which is a typical method used in industrial computational fluid mechanics
practices.

Additionally, a simple method of obtaining a set of grids for use in a dynamic
subgrid LES model simulation was presented. The advantage of this approach, which
involves a nested grid approach, is that implementing the dynamic model is
straightforward. It is seen that the nested approach gives rises to nonsmooth profiles
of the dynamic model coefficients, as neighboring daughter cells are forced to have the
same value of the dynamic coefficients. The single grid alternative is to use a static
coefficient model, which was shown to perform nearly as well as the dynamic model
when the amount of energy in the unresolved scales is large.
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